Tuesday, June 30, 2020

LIFEPATH RESEARCH IN EUROPE

https://www.frontiersin.org/articles/10.3389/fpubh.2020.00118/full

These are notes from an article in the website called “Frontiers,” and is about the impact of one’s lifecourse in health and well-being.  This is English and contrasted the difference between “high” classes and “lower”, but in terms of countries in Europe so there is no black/white or north/south dynamic.  The “lower” classes socioeconomically were in Eastern Europe.

The point was to discover what could help certain measures improve both the kind and timing of interventions.  
 ______________________________________

Studies on multiple biomarkers and omics provided credible mechanisms for our conceptual life-course model, including epigenetics, inflammatory markers, allostatic load, and metabolomics

. . . . . . . . .

Nevertheless, changes in self-rated health appeared to be short-lived and were not sustained a few years after the programme ended. On the contrary, improvements in psychological well-being seem to take time and were observed only 42 months after the end of the study. Overall, the findings from this report offer a mixed picture of the potential of CCTs to reduce health inequalities. On the one hand, the findings suggest that conditional cash transfers may improve the psychological well-being of low-income adults, but they also suggest that effects on physical and overall health assessments of adults and children are weak or inconsistent in the short- to medium-term.

. . . . . . . . . . .

Our analyses showed that although compulsory schooling laws increased the length of schooling and in some cases educational attainment, they may also have led to unexpected increases in depressive symptoms, and some negative effects on biological markers of diseases. These results raise questions about simple causal interpretations of the relationship between education and health. Overall, our findings suggest that changes in schooling may not always lead to expected improvements in population health, and they emphasize the need to monitor how specific social policies influence health and aging trajectories of individuals and families. However, these studies were conducted in a French cohort and the results may reflect the specific context and a specific time period.

. . . . . . . . . . . . 

The impact of socioeconomic condition on premature aging is mediated by known behavioral and clinical factors and intermediate molecular pathways that Lifepath studies have revealed, including epigenetic clocks (age acceleration), inflammation, allostatic load, and metabolic pathways—highlighting the biological imprint (embodiment) of social variables and strengthening causal attribution.
Research on the impact of recessions suggests that the economic strain imposed by short-term fluctuations in resources is harmful over the long-term. Social protection systems should be designed to reduce the volatility of household incomes by offering short-term income protection, and, potentially, investment in labor and human capital to ensure long-term income maintenance.

. . . . . . . . . . . .

The term “socioeconomic status” is often used in health research, but it contains a basic confusion between concepts of class, status, income, and wealth. In epidemiology (though not in social sciences) education is also used as a measure of position in the social structure. To make things worse, these different measures may be used as if they were interchangeable. A few studies such as that of Geyer et al. have tested the validity of this assumption. They found that in fact education, income, and an occupational measure of social class were only moderately correlated, and had different strengths of relationship with different health outcomes.

. . . . . . . . . . 

Sociology has traditionally drawn clear distinctions between class and status. But since these dimensions of inequality are often correlated, as they are with income and wealth, it can appear that for descriptive purposes it does not matter which one is used. However, if we understand the conceptual basis of the different measures we will greatly accelerate our efforts of explanation. Once these conceptual issues are clarified, it becomes clear that distinct dimensions of inequality implicate etiological pathways composed of different mixtures of material, psychosocial, cultural, and behavioral factors.

. . . . . . . . . . .

The MacArthur Study of Successful Aging was the first to propose an AL score. Parameters included systolic and diastolic blood pressure (indexes of cardiovascular activity); waist-hip ratio (an index of more long-term levels of metabolism and adipose tissue deposition, thought to be influenced by increased glucocorticoid activity); serum high-density lipoprotein (HDL) and total cholesterol levels (indexes of long-term atherosclerotic risk); blood plasma levels of total glycosylated hemoglobin (an integrated measure of glucose metabolism during a period of several days); serum dehydroepiandrosterone sulfate (DHEA-S) (a functional HPA axis antagonist); 12-h urinary cortisol excretion (an integrated measure of 12-h HPA axis activity); 12-h urinary norepinephrine and epinephrine excretion levels (integrated indexes of 12-h sympathetic nervous system activity). Some variants of the original items can be found in the literature, but the markers most commonly used are associated with cardiovascular and metabolic diseases (blood pressure, heart rate, blood glucose, insulin, blood lipids, body mass index, or waist circumference), HPA axis (cortisol, DHEA-S), sympathetic nervous system (epinephrine, norepinephrine, dopamine), and inflammation (C-reactive protein, IL-6).
These scores of AL have been shown to be a better predictor of mortality and functional limitations than the metabolic syndrome or any of the individual components used to measure AL when analyzed separately

. . . . . . . . . . . .

Epigenetics, specifically DNA methylation modifications, has been proposed as a biomarker of biological aging and as one of the plausible mechanisms through which social exposures become biologically embodied, affecting physiological systems and cellular pathways leading to disease susceptibility. The “epigenetic clock” is one of the main mechanisms contributing to age-related methylation changes. It refers to specific sites on the genome where methylation levels constantly change as the body ages and can therefore be used to predict chronological age with high accuracy. This type of clock can identify deviations between the epigenetic clock and chronological age that may be driven by social exposures. It means that the biological aging of one social group can be compared to another, a useful tool when examining the socially driven differences in healthy aging

. . . . . . . . . . 

This highlighted the need for refining and adapting the socio-economic-related exposures to the system and context they relate to. A good example of that approach involves social differences in the risk of infection by Epstein Barr virus (EBV) in children (N > 12,000) from the Millennium Cohort Study. Authors showed that children from disadvantaged social background were more likely to be infected by EBV, by the age of 3 compared to advantaged children, due to the material conditions to which they were exposed to. In these analyses, social exposures were refined and included environmental factors, and household environment (e.g., temperature in baby's room). The outcome of interest, the EBV infection, is usually benign, but the time of infection can be socially patterned. It was therefore used as a proxy for potential socially-driven differential immune maturation and function which can, later-in-life, affect health.

. . . . . . . . . . .

Associations detected in cord blood in relation to maternal education were not detected in relation to other SEP factors. Similar analyses did not detect any differentially methylated CpG sites in relation to maternal education in blood samples from 7 years old, and found 20 differentially methylated sites in blood samples from 15 years old. Of these no formal overlap was identified across ages but changes in methylation in the SULF1 gene appeared as a possible common target

No comments: